• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Barbaras Beta-Test
  • FAUZur zentralen FAU Website

Bitte wählen Sie einen der verfügbaren Suchdienste:

Suchempfehlungen

Portale

  • Mein Campus
  • UnivIS
  • Lageplan
  • Campo
  • StudOn
  • FAUdir
  • Stellenangebote
  • Lageplan
  • Hilfe im Notfall
Friedrich-Alexander-Universität Barbaras Beta-Test
Menu Menu schließen
  • Job-Alert
  • Forschung & Lehre
  • Technik & Verwaltung
  • Studentische Hilfskräfte
  • Auszubildende
  1. Startseite
  2. Research
  3. Project I – Growth of Single Crystal Transition Metal Perovskite Chalcogenides

Project I – Growth of Single Crystal Transition Metal Perovskite Chalcogenides

Bereichsnavigation: Research
  • Project A – Electronic Circuits for Piezoelectric Energy Harvesting and Sensor Array Systems
  • Project B – Excitation-Conforming, Shape-Adaptive Mechano-Electrical Energy Conversion
  • Project C – Macroscale Continuum Modeling and FE Simulation of Electromechanical Coupling in Perovskite-Based Materials
  • Project D – Additive Manufacturing of Cellular Lead-Free Ceramics
  • Project E – Lead-Free Perovskite Semiconductors with Tunable Bandgap for Energy Conversion
  • Project F – Room Temperature Aerosol Deposition of Lead-Free Ferroelectric Films for Energy Conversion Systems
  • Project G – Formulation and Crystallization of Perovskite Bearing Glass-Ceramics for Light Management
  • Project H – Stress Modulated Electromechanical Coupling of Lead-Free Ferroelectrics
  • Project I – Growth of Single Crystal Transition Metal Perovskite Chalcogenides
  • Project J – Solution Processed Ferroelectrics in Photovoltaic Devices
  • Project K – Multi-Scale Modeling of Electromechanical Coupling in Perovskite-Based Ferroelectric Materials and Composite
  • Project L – Modeling of Defect and Surface Chemistry of Perovskites

Project I – Growth of Single Crystal Transition Metal Perovskite Chalcogenides

In recent years semiconducting organic-inorganic lead halide perovskite materials have gained much interest due to their outstanding optoelectronic properties for use in solar cells and lighting applications. A major drawback of these materials is related to their toxicity and chemical instability. Recently, purely inorganic transition metal perovskite chalcogenides (TMPC) have been synthesized that exhibit promising optoelectronic properties as well and may even allow opto- electrochemical application like water splitting. Compared to their perovskite oxide counterparts of type ABO3 (A = alkali, alkaline, or rare earth metal, B = transition metal) with a large electronic bandgap (EG > 3eV), many perovskite chalcogenides exhibit an electronic bandgap in visible light spectrum that is related to the replacement of O by S or Se in the crystal lattice and which may enable a broad spectrum of applications. This project aims to grow single crystals of SrZrS3, BaZrS3, and related transition metal perovskite chalcogenides. This includes: (i) the investigation of the thermodynamic properties related to the phase diagram of the materials as well as chemical reaction kinetics (including the intermediate phases) that is present during materials synthesis; (ii) the application of this knowledge to determine / elaborate the processing routes that include hetero-epitaxial layers on pre-structured semiconductor wafers; and (iii) the investigation of the fundamental physical properties as well as the typical materials defects of the newly formed materials.

Projects

Participating Scientists

  •  

Publications

  • Sytnyk M., Yousefi-Amin AA., Freund T., Prihoda A., Götz K., Unruh T., Harreiß C., Will J., Spiecker E., Levchuk J., Osvet A., Brabec C., Künecke U., Wellmann P., Volobuev VV., Korczak J., Szczerbakow A., Story T., Simbrunner C., Springholz G., Wechsler D., Lytken O., Lotter S., Kampmann F., Maultzsch J., Singh K., Voznyy O., Heiß W.:
    Epitaxial Metal Halide Perovskites by Inkjet-Printing on Various Substrates
    In: Advanced Functional Materials 30 (2020), Art.Nr.: ARTN 2004612
    ISSN: 1616-301X
    DOI: 10.1002/adfm.202004612
  • Hayashi K., Lederer M., Fukumoto Y., Goto M., Yamamoto Y., Happo N., Harada M., Inamura Y., Oikawa K., Ohoyama K., Wellmann P.:
    Determination of site occupancy of boron in 6H-SiC by multiple-wavelength neutron holography
    In: Applied Physics Letters 120 (2022), Art.Nr.: 132101
    ISSN: 0003-6951
    DOI: 10.1063/5.0080895
  • Freund T., Cicconi MR., Wellmann P.:
    Fabrication of Bariumtrisulphide Thin Films as Precursors for Chalcogenide Perovskites
    In: physica status solidi (b) (2022)
    ISSN: 0370-1972
    DOI: 10.1002/pssb.202200094
  • Jamshaid S., Cicconi MR., Heiß W., Webber KG., Wellmann P.:
    Synthesis and Characterization of BaZrS3 Thin Films via Stacked Layer Methodology: A Comparative Study of BaZrS3 on Zirconium Foil and Silicon Carbide Substrates
    In: Advanced Engineering Materials (2024)
    ISSN: 1438-1656
    DOI: 10.1002/adem.202302161
  • Freund T., Jamshaid S., Monavvar M., Wellmann P.:
    Synthesis of BaZrS3 and BaS3 Thin Films: High and Low Temperature Approaches
    In: Crystals 14 (2024), Art.Nr.: 267
    ISSN: 2073-4352
    DOI: 10.3390/cryst14030267
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
Nach oben