• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Barbaras Beta-Test
  • FAUZur zentralen FAU Website

Bitte wählen Sie einen der verfügbaren Suchdienste:

Suchempfehlungen

Portale

  • Mein Campus
  • UnivIS
  • Lageplan
  • Campo
  • StudOn
  • FAUdir
  • Stellenangebote
  • Lageplan
  • Hilfe im Notfall
Friedrich-Alexander-Universität Barbaras Beta-Test
Menu Menu schließen
  • Job-Alert
  • Forschung & Lehre
  • Technik & Verwaltung
  • Studentische Hilfskräfte
  • Auszubildende
  1. Startseite
  2. Research
  3. Project F – Room Temperature Aerosol Deposition of Lead-Free Ferroelectric Films for Energy Conversion Systems

Project F – Room Temperature Aerosol Deposition of Lead-Free Ferroelectric Films for Energy Conversion Systems

Bereichsnavigation: Research
  • Project A – Electronic Circuits for Piezoelectric Energy Harvesting and Sensor Array Systems
  • Project B – Excitation-Conforming, Shape-Adaptive Mechano-Electrical Energy Conversion
  • Project C – Macroscale Continuum Modeling and FE Simulation of Electromechanical Coupling in Perovskite-Based Materials
  • Project D – Additive Manufacturing of Cellular Lead-Free Ceramics
  • Project E – Lead-Free Perovskite Semiconductors with Tunable Bandgap for Energy Conversion
  • Project F – Room Temperature Aerosol Deposition of Lead-Free Ferroelectric Films for Energy Conversion Systems
  • Project G – Formulation and Crystallization of Perovskite Bearing Glass-Ceramics for Light Management
  • Project H – Stress Modulated Electromechanical Coupling of Lead-Free Ferroelectrics
  • Project I – Growth of Single Crystal Transition Metal Perovskite Chalcogenides
  • Project J – Solution Processed Ferroelectrics in Photovoltaic Devices
  • Project K – Multi-Scale Modeling of Electromechanical Coupling in Perovskite-Based Ferroelectric Materials and Composite
  • Project L – Modeling of Defect and Surface Chemistry of Perovskites

Project F – Room Temperature Aerosol Deposition of Lead-Free Ferroelectric Films for Energy Conversion Systems

The focus of this project is the investigation of lead-free ferroelectrics films for energy conversion applications using aerosol deposition (AD). During deposition, micron-sized particles are accelerated through a nozzle by a carrier gas into a vacuum chamber. The particles impact a substrate, breaking apart and forming a dense (>96 %) ceramic film at room temperature with an exceptionally high deposition rate. Because AD is a room temperature process, deposition of metallic, ceramic, semi-conductor, glass, or plastic particles on various substrates is possible. This is not achievable with other film deposition techniques requiring high temperature densification. Multi-layer composite structures consisting of alternating layers of different materials (2-2 connectivity) (Figure 1a) or mixed composite structures (0-3 connectivity) as well as porous films structures can also be produced, which could be used to optimize electromechanical properties or build-in additional functionalities.The primary research goal is the improved understanding of the deposition of lead-free ferroelectric films for energy conversion applications using AD. Methods to thermally, chemically, and microstructurally tune the residual stress in the films will also be investigated, in addition to enhancement in electromechanical coupling using ceramic/ceramic composites and novel 3D film structures.

Projects

Participating Scientists

  •  

Publications

  • Cicconi MR., Khansur NH., Eckstein U., Werr F., Webber KG., de Ligny D.:
    Determining the local pressure during aerosol deposition using glass memory
    In: Journal of the American Ceramic Society 103 (2020), S. 2443-2452
    ISSN: 0002-7820
    DOI: 10.1111/jace.16947
  • Martin A., Khansur NH., Eckstein U., Rieß K., Kakimoto KI., Webber KG.:
    High temperature piezoelectric response of polycrystalline Li-doped (K,Na)NbO3 ceramics under compressive stress
    In: Journal of Applied Physics 127 (2020), Art.Nr.: 114101
    ISSN: 0021-8979
    DOI: 10.1063/1.5134554
  • Mashkov O., Körfer J., Eigen A., Yousefi Amin AA., Killilea NA., Barabash A., Sytnyk M., Khansur NH., Halik M., Webber KG., Heiß W.:
    Effect of Ligand Treatment on the Tuning of Infrared Plasmonic Indium Tin Oxide Nanocrystal Electrochromic Devices
    In: Advanced Engineering Materials (2020)
    ISSN: 1438-1656
    DOI: 10.1002/adem.202000112
  • These A., Khansur NH., Almora O., Luer L., Matt G., Eckstein U., Barabash A., Osvet A., Webber KG., Brabec C.:
    Characterization of Aerosol Deposited Cesium Lead Tribromide Perovskite Films on Interdigited ITO Electrodes
    In: Advanced Electronic Materials (2021)
    ISSN: 2199-160X
    DOI: 10.1002/aelm.202001165
  • Rieß K., Khansur NH., Martin A., Benčan A., Uršič H., Webber KG.:
    Stress- And frequency-dependent properties of relaxor-like sodium bismuth titanate
    In: Physical Review B 103 (2021), Art.Nr.: 094113
    ISSN: 0163-1829
    DOI: 10.1103/PhysRevB.103.094113
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
Nach oben