• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Barbaras Beta-Test
  • FAUZur zentralen FAU Website

Bitte wählen Sie einen der verfügbaren Suchdienste:

Suchempfehlungen

Portale

  • Mein Campus
  • UnivIS
  • Lageplan
  • Campo
  • StudOn
  • FAUdir
  • Stellenangebote
  • Lageplan
  • Hilfe im Notfall
Friedrich-Alexander-Universität Barbaras Beta-Test
Menu Menu schließen
  • Job-Alert
  • Forschung & Lehre
  • Technik & Verwaltung
  • Studentische Hilfskräfte
  • Auszubildende
  1. Startseite
  2. Forschung
  3. Project K – Multi-Scale Modeling of Electromechanical Coupling in Perovskite-Based Ferroelectric Materials and Composite

Project K – Multi-Scale Modeling of Electromechanical Coupling in Perovskite-Based Ferroelectric Materials and Composite

Bereichsnavigation: Forschung
  • Project A – Electronic Circuits for Piezoelectric Energy Harvesting and Sensor Array Systems
  • Religiosität und Lehrerprofessionalität
  • Project B – Excitation-Conforming, Shape-Adaptive Mechano-Electrical Energy Conversion
  • Religionslehrende in Bayern. Eine repräsentative empirisch-quantitative Befragung zum evangelischen Religionsunterricht an allgemeinbildenden Schulen
  • Religionslehrende in Bayern. Eine repräsentative empirisch-quantitative Befragung zum evangelischen Religionsunterricht an allgemeinbildenden Schulen
  • Project C – Macroscale Continuum Modeling and FE Simulation of Electromechanical Coupling in Perovskite-Based Materials
  • Religiöse und berufsbezogene Überzeugungen von Lehrkräften
  • Religiöse und berufsbezogene Überzeugungen von Lehrkräften
  • Project D – Additive Manufacturing of Cellular Lead-Free Ceramics
  • Schulentwicklung und -evaluation an Schulen in christlicher Trägerschaft
  • Project E – Lead-Free Perovskite Semiconductors with Tunable Bandgap for Energy Conversion
  • Project F – Room Temperature Aerosol Deposition of Lead-Free Ferroelectric Films for Energy Conversion Systems
  • Öffentliche Theologie und Öffentliche Religionspädagogik
  • Project G – Formulation and Crystallization of Perovskite Bearing Glass-Ceramics for Light Management
  • Project H – Stress Modulated Electromechanical Coupling of Lead-Free Ferroelectrics
  • Project I – Growth of Single Crystal Transition Metal Perovskite Chalcogenides
  • Populäre Medienkultur als Herausforderung für religiöse Bildung und Medienbildung
  • Project J – Solution Processed Ferroelectrics in Photovoltaic Devices
  • Interreligiöse und interkulturelle Bildung
  • Project K – Multi-Scale Modeling of Electromechanical Coupling in Perovskite-Based Ferroelectric Materials and Composite
  • Project L – Modeling of Defect and Surface Chemistry of Perovskites
  • Religiöse Bildungsprozesse in Schule und Gemeinde
  • Bilingualer Religionsunterricht
  • Geschichte als Gegenstand und Dimension von Religionspädagogik
  • Menschenrechte, Bildung und Religion
  • Evaluation des sozialen Bildungsprojekts CJD Panorama

Project K – Multi-Scale Modeling of Electromechanical Coupling in Perovskite-Based Ferroelectric Materials and Composite

Ferroelectrics based on disordered perovskites, including relaxor-type materials, are strong alternatives to conventional lead-based PZT. Ferroelectrics exhibit a strict coupling between crystal lattice deformation and the spontaneous electric polarization, which can be used as an order parameter in phase-field models (PFM) to describe the microstructure at the meso-scale. Such PFM are suitable for modeling the coupled evolution of electrical and mechanical fields and microstructural order parameters in a multi-physics setting. However, unlike conventional ferroelectrics, the properties of relaxor ferroelectrics (RFs) depend crucially on the presence of atomic level randomness. This can be expressed as quenched compositional disorder that induces random fields that interact with the ferroelectric domain structure. The question remains how meso-scale modeling approaches can be adequately parameterized within a multiscale framework, based upon parameters characterizing compositional disorder on the atomic scale and quantum mechanical descriptions of the atomic-level interactions. To develop a multiscale framework for RFs, the range of accessible system sizes in molecular dynamics (MD) needs to be expanded beyond the current state-of-the art and reliable MD potentials for describing polarizable multi-component systems need to be developed. Moreover, the dependence of the phase transition in ferroelectrics on (chemical) disorder is of major importance, where especially the elastic constraints imposed by deposition as thin films may offer strongly improved effects in the dielectric response. This project aims to establish a consistent multi-scale description of perovskite-based ferroelectrics for both chemically ordered and disordered perovskite materials, including the atomic-scale interactions of structure, disorder, and polarization, and the implementation of atomistic information into a meso-scale model, capable of predicting macro-scale performance. In the focus is the formation and stability of polar nano-regions in RFs and their mutual interaction by simulations on both length scales, explaining their temperature dependent dynamics. Existing methods for large-scale MD systems will be adapted and improved for ferroelectric materials, and an effective numerical implementation of the PFM realized.

Projekte

Beteiligte Wissenschaftler

  •  

Publikationen

  • Durdiev D., Wendler F.:
    An effective Fourier spectral phase-field approach for ferroelectric materials
    In: Computational Materials Science 218 (2023), Art.Nr.: 111928
    ISSN: 0927-0256
    DOI: 10.1016/j.commatsci.2022.111928
  • Tsuzuki T., Ogata S., Kobayashi R., Uranagase M., Shimoi S., Durdiev D., Wendler F.:
    Vacancy-assisted ferroelectric domain growth in BaTiO3under an applied electric field: A molecular dynamics study
    In: Journal of Applied Physics 131 (2022), Art.Nr.: 194101
    ISSN: 0021-8979
    DOI: 10.1063/5.0090231
  • Durdiev D., Zaiser M., Wendler F., Tsuzuki T., Azuma H., Ogata S., Kobayashi R., Uranagase M.:
    Determining thermal activation parameters for ferroelectric domain nucleation in BaTiO3 from molecular dynamics simulations
    In: Applied Physics Letters 124 (2024), Art.Nr.: 132901
    ISSN: 0003-6951
    DOI: 10.1063/5.0187476
  • Hsu LT., Wendler F., Grünebohm A.:
    Electric field direction dependence of the electrocaloric effect in BaTiO3
    In: Physical Review Materials 8 (2024), Art.Nr.: 094408
    ISSN: 2475-9953
    DOI: 10.1103/PhysRevMaterials.8.094408
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
Nach oben