• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Barbaras Beta-Test
  • FAUZur zentralen FAU Website

Bitte wählen Sie einen der verfügbaren Suchdienste:

Suchempfehlungen

Portale

  • Mein Campus
  • UnivIS
  • Lageplan
  • Campo
  • StudOn
  • FAUdir
  • Stellenangebote
  • Lageplan
  • Hilfe im Notfall
Friedrich-Alexander-Universität Barbaras Beta-Test
Menu Menu schließen
  • Job-Alert
  • Forschung & Lehre
  • Technik & Verwaltung
  • Studentische Hilfskräfte
  • Auszubildende
  1. Startseite
  2. Forschung
  3. Project J – Solution Processed Ferroelectrics in Photovoltaic Devices

Project J – Solution Processed Ferroelectrics in Photovoltaic Devices

Bereichsnavigation: Forschung
  • Project A – Electronic Circuits for Piezoelectric Energy Harvesting and Sensor Array Systems
  • Religiosität und Lehrerprofessionalität
  • Project B – Excitation-Conforming, Shape-Adaptive Mechano-Electrical Energy Conversion
  • Religionslehrende in Bayern. Eine repräsentative empirisch-quantitative Befragung zum evangelischen Religionsunterricht an allgemeinbildenden Schulen
  • Religionslehrende in Bayern. Eine repräsentative empirisch-quantitative Befragung zum evangelischen Religionsunterricht an allgemeinbildenden Schulen
  • Project C – Macroscale Continuum Modeling and FE Simulation of Electromechanical Coupling in Perovskite-Based Materials
  • Religiöse und berufsbezogene Überzeugungen von Lehrkräften
  • Religiöse und berufsbezogene Überzeugungen von Lehrkräften
  • Project D – Additive Manufacturing of Cellular Lead-Free Ceramics
  • Schulentwicklung und -evaluation an Schulen in christlicher Trägerschaft
  • Project E – Lead-Free Perovskite Semiconductors with Tunable Bandgap for Energy Conversion
  • Project F – Room Temperature Aerosol Deposition of Lead-Free Ferroelectric Films for Energy Conversion Systems
  • Öffentliche Theologie und Öffentliche Religionspädagogik
  • Project G – Formulation and Crystallization of Perovskite Bearing Glass-Ceramics for Light Management
  • Project H – Stress Modulated Electromechanical Coupling of Lead-Free Ferroelectrics
  • Project I – Growth of Single Crystal Transition Metal Perovskite Chalcogenides
  • Populäre Medienkultur als Herausforderung für religiöse Bildung und Medienbildung
  • Project J – Solution Processed Ferroelectrics in Photovoltaic Devices
  • Interreligiöse und interkulturelle Bildung
  • Project K – Multi-Scale Modeling of Electromechanical Coupling in Perovskite-Based Ferroelectric Materials and Composite
  • Project L – Modeling of Defect and Surface Chemistry of Perovskites
  • Religiöse Bildungsprozesse in Schule und Gemeinde
  • Bilingualer Religionsunterricht
  • Geschichte als Gegenstand und Dimension von Religionspädagogik
  • Menschenrechte, Bildung und Religion
  • Evaluation des sozialen Bildungsprojekts CJD Panorama

Project J – Solution Processed Ferroelectrics in Photovoltaic Devices

Organic-inorganic metal-halide perovskites have revolutionized the field of solution processed photovoltaics within the last few years, whereas ferroelectric titanate-based perovskites are the most widely used piezoelectric materials. Piezoelectric response, however, was also observed from solution processed metal-halides, and recently the effect was optimized in a novel compound organic- inorganic perovskite with the composition trimethylchloromethyl ammonium trichloromanganese(II) [TMCM-MnCl3], which exhibits a piezoelectric coefficient of 185 pC/N that outperforms some lead-free titanates (BaTiO3 with [001] poling for instance exhibits a value of 105 pC/N). Merging ferroelectrics with photovoltaics has opened interesting and useful aspects: While in conventional semiconductor photovoltaic devices, photoexcited electrons and holes are separated by built-in electric fields from p-n junctions or heterojunctions, in ferroelectric materials internal electric fields due to ferromagnetic domain walls can drive the photoexited carriers. As a consequence, in a traditional semiconductor the maximum open circuit voltage is given by the band gap of the semiconductor, whereas in ferroelectric photovoltaic devices the possibility to achieve above-bandgap voltages have been discussed. A severe disadvantage of the oxide based ferroelectric materials for photovoltaics has been that their band gap energies are too high to efficiently harvest the sun’s spectrum, whereas specially designed low band gap oxide perovskites exhibited relatively good performance only in a multilayer stacked architecture.
In this project photovoltaic devices will be developed from solution processed ferroelectric semiconductors with a perovskite-like crystal structure. The effect of the ferroelectric field on the photovoltaic performance will be optimized to combine high power conversion efficiency and high open circuit voltages. Novel molecular ferroelectric materials will be developed for these purposes in the form of thin films and single crystals based on lead free metal halides with different organic counter ions, to tune the ferroelectric response as well as the materials band gap energy.

Projekte

Beteiligte Wissenschaftler

  •  

Publikationen

  • Mashkov O., Körfer J., Eigen A., Yousefi Amin AA., Killilea NA., Barabash A., Sytnyk M., Khansur NH., Halik M., Webber KG., Heiß W.:
    Effect of Ligand Treatment on the Tuning of Infrared Plasmonic Indium Tin Oxide Nanocrystal Electrochromic Devices
    In: Advanced Engineering Materials (2020)
    ISSN: 1438-1656
    DOI: 10.1002/adem.202000112
  • Sytnyk M., Yousefi-Amin AA., Freund T., Prihoda A., Götz K., Unruh T., Harreiß C., Will J., Spiecker E., Levchuk J., Osvet A., Brabec C., Künecke U., Wellmann P., Volobuev VV., Korczak J., Szczerbakow A., Story T., Simbrunner C., Springholz G., Wechsler D., Lytken O., Lotter S., Kampmann F., Maultzsch J., Singh K., Voznyy O., Heiß W.:
    Epitaxial Metal Halide Perovskites by Inkjet-Printing on Various Substrates
    In: Advanced Functional Materials 30 (2020), Art.Nr.: ARTN 2004612
    ISSN: 1616-301X
    DOI: 10.1002/adfm.202004612
  • Daum M., Deumel S., Sytnyk M., Afify HA., Hock R., Eigen A., Zhao B., Halik M., These A., Matt G., Brabec C., Tedde SF., Heiß W.:
    Self-Healing Cs3Bi2Br3I6 Perovskite Wafers for X-Ray Detection
    In: Advanced Functional Materials (2021)
    ISSN: 1616-301X
    DOI: 10.1002/adfm.202102713
  • Deumel S., Van Breemen A., Gelinck G., Peeters B., Maas J., Verbeek R., Shanmugam S., Akkerman H., Meulenkamp E., Huerdler JE., Acharya M., Garcia-Batlle M., Almora O., Guerrero A., Garcia-Belmonte G., Heiß W., Schmidt O., Tedde SF.:
    High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites
    In: Nature Electronics 4 (2021), S. 681-688
    ISSN: 2520-1131
    DOI: 10.1038/s41928-021-00644-3
  • Kondo K., Watanabe Y., Kuno J., Ishii Y., Kawasaki S., Kato M., Kalita G., Hattori Y., Mashkov O., Sytnyk M., Heiß W.:
    Flexible Photocatalytic Electrode Using Graphene, Non-noble Metal, and Organic Semiconductors for Hydrogen Evolution Reaction
    In: Energy Technology (2021)
    ISSN: 2194-4288
    DOI: 10.1002/ente.202100123
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
Nach oben