• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Barbaras Beta-Test
  • FAUZur zentralen FAU Website

Bitte wählen Sie einen der verfügbaren Suchdienste:

Suchempfehlungen

Portale

  • Mein Campus
  • UnivIS
  • Lageplan
  • Campo
  • StudOn
  • FAUdir
  • Stellenangebote
  • Lageplan
  • Hilfe im Notfall
Friedrich-Alexander-Universität Barbaras Beta-Test
Menu Menu schließen
  • Job-Alert
  • Forschung & Lehre
  • Technik & Verwaltung
  • Studentische Hilfskräfte
  • Auszubildende
  1. Startseite
  2. Forschung
  3. Project H – Stress Modulated Electromechanical Coupling of Lead-Free Ferroelectrics

Project H – Stress Modulated Electromechanical Coupling of Lead-Free Ferroelectrics

Bereichsnavigation: Forschung
  • Project A – Electronic Circuits for Piezoelectric Energy Harvesting and Sensor Array Systems
  • Religiosität und Lehrerprofessionalität
  • Project B – Excitation-Conforming, Shape-Adaptive Mechano-Electrical Energy Conversion
  • Religionslehrende in Bayern. Eine repräsentative empirisch-quantitative Befragung zum evangelischen Religionsunterricht an allgemeinbildenden Schulen
  • Religionslehrende in Bayern. Eine repräsentative empirisch-quantitative Befragung zum evangelischen Religionsunterricht an allgemeinbildenden Schulen
  • Project C – Macroscale Continuum Modeling and FE Simulation of Electromechanical Coupling in Perovskite-Based Materials
  • Religiöse und berufsbezogene Überzeugungen von Lehrkräften
  • Religiöse und berufsbezogene Überzeugungen von Lehrkräften
  • Project D – Additive Manufacturing of Cellular Lead-Free Ceramics
  • Schulentwicklung und -evaluation an Schulen in christlicher Trägerschaft
  • Project E – Lead-Free Perovskite Semiconductors with Tunable Bandgap for Energy Conversion
  • Project F – Room Temperature Aerosol Deposition of Lead-Free Ferroelectric Films for Energy Conversion Systems
  • Öffentliche Theologie und Öffentliche Religionspädagogik
  • Project G – Formulation and Crystallization of Perovskite Bearing Glass-Ceramics for Light Management
  • Project H – Stress Modulated Electromechanical Coupling of Lead-Free Ferroelectrics
  • Project I – Growth of Single Crystal Transition Metal Perovskite Chalcogenides
  • Populäre Medienkultur als Herausforderung für religiöse Bildung und Medienbildung
  • Project J – Solution Processed Ferroelectrics in Photovoltaic Devices
  • Interreligiöse und interkulturelle Bildung
  • Project K – Multi-Scale Modeling of Electromechanical Coupling in Perovskite-Based Ferroelectric Materials and Composite
  • Project L – Modeling of Defect and Surface Chemistry of Perovskites
  • Religiöse Bildungsprozesse in Schule und Gemeinde
  • Bilingualer Religionsunterricht
  • Geschichte als Gegenstand und Dimension von Religionspädagogik
  • Menschenrechte, Bildung und Religion
  • Evaluation des sozialen Bildungsprojekts CJD Panorama

Project H – Stress Modulated Electromechanical Coupling of Lead-Free Ferroelectrics

Despite the potential importance of lead-free ferroelectric materials for applications in the medical, aerospace, military, transportation, and energy sectors due to their promising electromechanical properties, there is a clear lack of information regarding the mechanical behavior as well as the influence of external mechanical fields on the electromechanical coupling, structural phase transitions, and system disorder, i.e., ergodicity. In particular, the influence of aliovalent and isovalent dopants on the electromechanical behavior has not been fully understood, in particular the effect of dopants and corresponding defect associates on the mechanical properties.
The aim of this project is to experimentally investigate the influence of lattice defects and stress on the electromechanical properties and crystal structure of lead- free ferroelectrics for energy conversion systems through a combination of macroscopic measurements and local structure characterization. In particular, x-ray fluorescence holography at SPring-8 will be used to provide 3D atomic images around specific elements, giving information on the local lattice distortions and atomic fluctuations around dopants in disordered systems. In addition, x-ray diffraction with resonant scattering, x-ray absorption fine structure, and inelastic X-ray scattering will be also be employed to understand local structure as well as phase transitions of lead-free ferroelectric materials.

Projekte

Beteiligte Wissenschaftler

  •  

Publikationen

  • Khansur NH., Martin A., Rieß K., Nishiyama H., Hatano K., Wang K., Li JF., Kakimoto KI., Webber KG.:
    Stress-modulated optimization of polymorphic phase transition in Li-doped (K,Na)NbO3
    In: Applied Physics Letters 117 (2020), Art.Nr.: 032901
    ISSN: 0003-6951
    DOI: 10.1063/5.0016072
  • Lorenz MM., Martin A., Webber KG., Travitzky N.:
    Electromechanical Properties of Robocasted Barium Titanate Ceramics
    In: Advanced Engineering Materials (2020)
    ISSN: 1438-1656
    DOI: 10.1002/adem.202000325
  • Khansur NH., Biggemann J., Stumpf M., Rieß K., Fey T., Webber KG.:
    Temperature- and Stress-Dependent Electromechanical Response of Porous Pb(Zr,Ti)O3
    In: Advanced Engineering Materials (2020)
    ISSN: 1438-1656
    DOI: 10.1002/adem.202000389
  • Nishiyama H., Martin A., Hatano K., Kishimoto S., Sasaki N., Khansur NH., Webber KG., Kakimoto KI.:
    Electric-field-induced strain of (Li,Na,K)NbO3-based multilayered piezoceramics under electromechanical loading
    In: Journal of Applied Physics 128 (2020)
    ISSN: 0021-8979
    DOI: 10.1063/5.0029615
  • Nishiyama H., Martin A., Hatano K., Kishimoto S., Sasaki N., Webber KG., Kakimoto KI.:
    Alkali volatilization of (Li,Na,K)NbO3-based piezoceramics and large-field electrical and mechanical properties
    In: Journal of the Ceramic Society of Japan 129 (2021), S. 127-134
    ISSN: 1882-0743
    DOI: 10.2109/jcersj2.20201
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
Nach oben