• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Barbaras Beta-Test
  • FAUZur zentralen FAU Website

Bitte wählen Sie einen der verfügbaren Suchdienste:

Suchempfehlungen

Portale

  • Mein Campus
  • UnivIS
  • Lageplan
  • Campo
  • StudOn
  • FAUdir
  • Stellenangebote
  • Lageplan
  • Hilfe im Notfall
Friedrich-Alexander-Universität Barbaras Beta-Test
Menu Menu schließen
  • Job-Alert
  • Forschung & Lehre
  • Technik & Verwaltung
  • Studentische Hilfskräfte
  • Auszubildende
  1. Startseite
  2. Forschung
  3. Project C – Macroscale Continuum Modeling and FE Simulation of Electromechanical Coupling in Perovskite-Based Materials

Project C – Macroscale Continuum Modeling and FE Simulation of Electromechanical Coupling in Perovskite-Based Materials

Bereichsnavigation: Forschung
  • Project A – Electronic Circuits for Piezoelectric Energy Harvesting and Sensor Array Systems
  • Religiosität und Lehrerprofessionalität
  • Project B – Excitation-Conforming, Shape-Adaptive Mechano-Electrical Energy Conversion
  • Religionslehrende in Bayern. Eine repräsentative empirisch-quantitative Befragung zum evangelischen Religionsunterricht an allgemeinbildenden Schulen
  • Religionslehrende in Bayern. Eine repräsentative empirisch-quantitative Befragung zum evangelischen Religionsunterricht an allgemeinbildenden Schulen
  • Project C – Macroscale Continuum Modeling and FE Simulation of Electromechanical Coupling in Perovskite-Based Materials
  • Religiöse und berufsbezogene Überzeugungen von Lehrkräften
  • Religiöse und berufsbezogene Überzeugungen von Lehrkräften
  • Project D – Additive Manufacturing of Cellular Lead-Free Ceramics
  • Schulentwicklung und -evaluation an Schulen in christlicher Trägerschaft
  • Project E – Lead-Free Perovskite Semiconductors with Tunable Bandgap for Energy Conversion
  • Project F – Room Temperature Aerosol Deposition of Lead-Free Ferroelectric Films for Energy Conversion Systems
  • Öffentliche Theologie und Öffentliche Religionspädagogik
  • Project G – Formulation and Crystallization of Perovskite Bearing Glass-Ceramics for Light Management
  • Project H – Stress Modulated Electromechanical Coupling of Lead-Free Ferroelectrics
  • Project I – Growth of Single Crystal Transition Metal Perovskite Chalcogenides
  • Populäre Medienkultur als Herausforderung für religiöse Bildung und Medienbildung
  • Project J – Solution Processed Ferroelectrics in Photovoltaic Devices
  • Interreligiöse und interkulturelle Bildung
  • Project K – Multi-Scale Modeling of Electromechanical Coupling in Perovskite-Based Ferroelectric Materials and Composite
  • Project L – Modeling of Defect and Surface Chemistry of Perovskites
  • Religiöse Bildungsprozesse in Schule und Gemeinde
  • Bilingualer Religionsunterricht
  • Geschichte als Gegenstand und Dimension von Religionspädagogik
  • Menschenrechte, Bildung und Religion
  • Evaluation des sozialen Bildungsprojekts CJD Panorama

Project C – Macroscale Continuum Modeling and FE Simulation of Electromechanical Coupling in Perovskite-Based Materials

Ferroelectric materials are of utmost interest for a variety of technological applications due to their electromechanical coupling properties. At the macroscopic length scale, ferroelectrics models are based on continuum approaches using the finite element method. Linear continuum models that ignore the nonlinear phenomena in ferroelectrics are, however, insufficient to accurately predict ferroelectric behavior. For that reason, nonlinear continuum models are preferred to more efficiently capture the polarization switching mechanisms. To date, most ferroelectric models have been based on ferroelectric domain switching, which occurs through a nucleation and growth process. Novel lead-free ferroelectrics, however, have displayed different straining mechanisms, necessitating new modeling and simulation methods. The lead-free ferroelectric materials, (Ba,Ca)(Zr,Ti)O3 (BCZT) and (K,Na)NbO3 (KNN), are promising candidates to be used in energy harvesting devices. They show excellent, tunable small signal electromechanical properties, which are mainly due to domain wall motion in both systems. The aim of this project is the macroscale modeling of the electromechanical coupling in lead-free perovskite ferroelectrics using continuum mechanics. A nonlinear macroscopic material model will be developed and specified for the model systems BCZT and KNN. Its implementation into a finite element framework enables the simulation and optimization of electromechanical energy harvesting devices, which will be compared directly to experimental data.

Projekte

Beteiligte Wissenschaftler

  •  

Publikationen

  • Hasegawa R., Mehnert M., Mergheim J., Steinmann P., Kakimoto K.:
    Behavior of vibration energy harvesters composed of polymer fibers and piezoelectric ceramic particles
    In: Sensors and Actuators A-Physical 303 (2020), Art.Nr.: 111699
    ISSN: 0924-4247
    DOI: 10.1016/j.sna.2019.111699
  • Yamamoto R., Hegendörfer A., Mergheim J., Kakimoto KI.:
    Vibration energy harvesting and internal electric potential of (Na,K)NbO3/polyimide piezoelectric composites
    In: Japanese Journal of Applied Physics 60 (2021)
    ISSN: 0021-4922
    DOI: 10.35848/1347-4065/ac1c3e
  • Mehnert M., Hossain M., Steinmann P.:
    A complete thermo-electro-viscoelastic characterization of dielectric elastomers, Part I: Experimental investigations
    In: Journal of the Mechanics and Physics of Solids (2021), S. 104603
    ISSN: 0022-5096
    DOI: 10.1016/j.jmps.2021.104603
  • Mehnert M., Hossain M., Steinmann P.:
    A complete thermo-electro-viscoelastic characterization of dielectric elastomers, Part II: Continuum modeling approach
    In: Journal of the Mechanics and Physics of Solids 157 (2021), S. 104625
    ISSN: 0022-5096
    DOI: 10.1016/j.jmps.2021.104625
  • Hegendörfer A., Steinmann P., Mergheim J.:
    Investigation of a nonlinear piezoelectric energy harvester with advanced electric circuits with the finite element method
    In: SN Applied Sciences 4 (2022), Art.Nr.: 120
    ISSN: 2523-3963
    DOI: 10.1007/s42452-022-05003-1
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
Nach oben